Proposal for a New Course on Quantum Algorithms

Proposer: Jens Palsberg (Professor of Computer Science)

Course number: 238B.

Course Catalog Title: Quantum Algorithms.

Short Title: Quantum Algorithms.

Units: 4.

Grading Basis: Letter grading.

Format: Lecture only.

GE or Major/Minor requirement: N/A.

Requisites: CS 238 Quantum Programming.

Description: Lecture, four hours; Discussion, two hours; outside study, eight hours. Quantum algorithms including quantum machine learning, Hamiltonian simulation, and quantum walk; quantum complexity classes, including BQP, QMA, and QIP; quantum verification, including instrumented simulation and quantum abstract interpretation; high-level quantum languages, including Silq, and big theorems in quantum computing including Gottesman-Knill and Solovay-Kitaev. Students will do a variety of projects.

Justification: Quantum computing is one of the most exciting technical topics of our time and our students deserve to have the option to take courses on this topic. The <u>National Quantum</u> <u>Initiative</u>, signed into law in December 2018, allocated more than \$1 billion to research and training in quantum information science. My course is the second in a sequence that will provide the kind of training that is called for in the law.

My expertise on the topic: I have been a researcher and an instructor in the area of programming languages and compilers since the early 1990s. In 2018, I expanded my interests to also cover quantum computing and I saw an opportunity to teach quantum computing. Research-wise, I am a member of the \$25 million NSF Quantum Leap Institute that was established in 2020 and is led by Berkeley. This institute will tackle far-reaching questions at the heart of general-purpose quantum computation. Additionally, I led the writing of a proposal that led to an NSF award of \$750,000 for a Quantum Computing and Information Science Faculty Fellowship. This award supports the salary of a faculty member for three years. In 2023, I received the Eon Instrumentation Excellence in Teaching Award at UCLA for my courses on quantum computing.

Supplemental Information: None.

Extra resources required for the class: None. In the three previous course offerings, we used one of IBM's quantum computers.

Effective Date: Winter 2024.

Fall/Winter/Spring: I plan to offer the course every Winter quarter.

Syllabus:

Title of the course: Quantum Algorithms.

Course objectives: Learn advanced algorithms and big theorems of quantum computing; implement complex quantum algorithms and run them on a quantum computer.

Learning outcomes:

- *Knowledge outcomes:* a grasp of how advanced quantum algorithms work; insight into major quantum complexity classes and how they are related to classical complexity classes; understanding of the main techniques for verifying the correctness of quantum circuits; and knowledge of some big theorems in quantum computing and how they are proved.
- *Skills outcomes:* ability to map a paper on an advanced quantum algorithm to an experiment on a quantum computer; ability to prove and experimentally verify fundamental theorems in quantum computing.
- *Behavioral outcomes:* agency to contribute significantly to the development of new quantum algorithms.

Course description: Quantum algorithms including quantum machine learning, Hamiltonian simulation, and quantum walk; quantum complexity classes, including BQP, QMA, and QIP; quantum verification, including instrumented simulation and quantum abstract interpretation; quantum languages, including Silq, and big theorems in quantum computing including Gottesman-Knill and Solovay-Kitaev. Students will do a variety of projects.

Weekly topics:

Week 1:	Gottesman-Knill	Foundations			
	Surface code	Error correction			
Week 2:	Data representation	Algorithms			
	Amplitude amplification				
Week 3:	Hamiltonian simulation by Trotterization				
	Linear combination of unitaries				
Week 4:	Solving linear equations				
	Quantum linear regression				
Week 5:	Differentiable quantum programming				
	Silq	Languages			
Week 6:	{CNOT,H,T} is universal	Universality			
	Solovay-Kitaev				
Week 7:	Approximate quantum computing				
	Quantum complexity	Complexity			
Week 8:	Five 2-qubits gates are necessary to impl. Toffoli	Impossibility			

Five 2-qubits	gates a	are	necessary	/ to	impl.	Toffoli
	3					

Week 9:	Projections as assertions
	Quantum abstract interpretation
Week 10:	Generalized Gottesman-Knill

Course evaluation

Verification

Discussion

Weekly discussion section: A weekly discussion section with a teaching assistant enables students with diverse backgrounds to apply what was learned from lectures in a hands-on way, to ask questions and get clarifications about the course material, and to obtain guidance on assigned homeworks and projects.

Course assignments:

- Grover's search with an unknown number of solutions
- Proof of Gottesman-Knill
- Number of SYC gates sufficient to implement CCNOT
- Run Hamiltonian simulation with a quantum simulator
- Approximate CCNOT
- QAOA in Silq
- Example of solving linear equations
- State of quantum machine learning

Grading structure:

- Assignments: 50%
- Final exam: 25%
- Quizzes: 10%
- Peer evaluation: 10%
- Participation: 5%

Reading list:

- Several papers, distributed via Bruinlearn.
- My lecture notes, distributed via Bruinlearn.

Enrollment and Student Evaluations from Previous Course Offerings: I have offered CS 239 Quantum Algorithms three times, in Spring 2021, in Spring 2022, and in Winter 2023; and I have attached the teaching evaluations. In summary, the evaluations are:

Spring 2021, instructor: 8.67, course 8.00 (21 responses out of 27).

Spring 2022, instructor: 8.78, course 8.56 (9 responses out of 11).

Winter 2023, instructor: 7.94, course 7.66 (35 responses out of 42).

In Spring 2021 and Spring 2022, the students were 80% Computer Science students, while the rest were from Physics, ECE, and Math. In the academic year 2023-2024, Physics started a new self-supporting degree program called Master of Quantum Science and Technology (MQST). The MQST students are required to take both of my quantum courses: CS 238 Quantum Programming and the CS 238B Quantum Algorithms that is the subject of this proposal. As a result, in the Winter 2023 offering of my course, 60% of the students were MQST students and 40% were Computer Science students. I am sensitive to the drop in my course evaluations and wonder whether the students from Physics tend to give lower scores.

Overlap: UCLA has no other permanent course that has any significant overlap with my course.